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Inverse problems for orthogonal matrices, Toda flows, and signal
processing

L. Faybusovich
Department of Mathematics, University of Notre Dame

G.S. Ammar
Department of Math. Sciences, Northern Illinois University

W.B. Gragg
Department of Mathematics, Naval Postgraduate School

Abstract the amplitudes al can be recovered from the
first components of the normalized eigenvec-

We consider Toda flows induced on the set of tors of 0. One can then use any of several al-
orthogonal upper Hessenberg matrices. The gorithms designed for unitary and orthogonal
explicit formulas for the evolution of Schur pa- Hessenberg eigenproblems [9, 6, 1, 10, 4]
rameters are given, to calculate the frequencies and amplitudes.

In the present paper we investigate another

1 Introduction aspect of orthogonal Hessenberg matrices.
Namely, we consider Toda flows on these ma-

Any symmetric nonnegative definite Toeplitz trices (referred to as Schur flows in [3]) and
matrix T,,+i of order n + 1 can be modeled obtain explicit formulas for the evolution of
as an autocorrelation matrix of a stationary the so-called Schur parameters under the Toda
signal [12] flow. Since Schur parameters determine or-

P thogonal Hessenberg matrices uniquely, we ac-

XZm at Cos(MW/ + 01) + Yin, tually obtain an explicit description of the evo-
lution of a given orthogonal Hessenberg matrix
under the Toda flow.

where 0t are arbitrary phase shifts and ym is a

zero mean white noise process whose variance
equals the smallest eigenvalue Ami of T,,n+. 2 Inverse problem for orthog-
Assume that the eigenvalue \ni is simple, and onal Hessenberg matrices
let (i/0,. • -, 17,,) be a corresponding eigenvector.
Then [12] the polynomial Let M be the set of positive Borel measures

= 0 + . .. + 77hA'• on C which have the following properties. For
any p E M the support of p, which we denote

has n distinct roots A,,..., A,, on the unit cir- by AM, consists of exactly n points which liecle, and the frequencies of Zn are given by on the unit circle U and is such that: i) if

{exp(-iwt}P= = {A•j.l, where i denotes the A E At, then the complex conjugate ) is also
imaginary unit. One can construct [2] an or- in AA anduf{A} = p{}); ii) p{A} > 0 for any A
thogonal Hessenberg matrix 0 with character- in A,; iii) p(C) = 1; iv) - 1 ý A.. We further
istic polynomial proportional to 0,,. Moreover, introduce a class OH+ of orthogonal matrices



o =11 oij 11 such that oi = 0 if i - j > 1 , Indeed, f AiA'diz = YxEA^AA'P{A} =

oi+l,i > 0 for all i and det0= 1. Finally, given _'EA A '-p{A}, since A = A-' for A E U.
a vector T = (to,--'.,T-)r E Rn introduce a Further, since 1{A} = u{A} we have
corresponding Toeplitz matrix T(r) =11 tij fl,
where tij - Ti..[. E AiJf{A} = Ej A'{i-jY} = I iAJdp"

Theorem 2.1 Given a positive definite sym- AEA A EA,

metric Toeplitz matrix T(r) with ro = 1 there Let q = ao +... + an-l n-1 E Pn. We have
exist exactly one measure p E M and exactly
one 0 E OH+ such that n-1

L dp) =< e,,0'e, (2.1) ij=O

i = O,...,n- 1. Here el,.'*,en is the canoni- Further, fI q 12 dp -0 if and only ifq(A) = 0

cal basis in Rn and <, > is the standard scalar for any A E A.. Since degq < n = card(AM),

product. Conversely, for any p E M and any this is possible only if q = 0. Consider the

0 E OH+ the matrices T(r), T(r') are Posi- polynomial ý(A) = [-EAh (A - t) = bo + ... +

tive definite Toeplitz matrices. Here bn-lln-l + An. Since all roots of ý lie on
the unit circle we clearly have And(1/A) =

=fA'dp(A),ri =< el,Oie, >, bo0(A),bo = ±1. Further, all coefficients of
JC t are real because A, = A.. Consider the

i = 0,...,n- 1. linear operator 0 :P, . P& defined as fol-
lows: OAi = Ai+l i = 0,-.-.,n -2, OA"-' =

Remark 2.2 Theorem 2.1 is more or less 0 A- = A'+' We n p that

known to the experts (see e.g. [8], [11]). We 0io rtho o nal elaiv t e sa r ro duct

nevertheless give an independent proof to clar- g

ify relationships between int.-duced objects. .> We should prove that

Remark 2.3 There is nothing mysterious < OA' Aj >=< 'O-1AV >

about the number -1 which we have excluded for any i,j = 0,---,n- 1. The only non-
from the support of each measure in M. This trivial case is i = n - 1,J = 0. We have
simplifies notations a little bit. < OAn-1, 1 >= -bo - b1r1 - ... - bn-1in.-,

We need the following elementary lemma. whererT = fC A'du(A). Let 0-11 = co +... +
Lcn-1An-1. Then < A\-I,0-11 >= corn-1 +

Lemma 2.4 Let of ... , ve- be an orthonor- clTrn-2+. .-.+cn-1. Thus, it is sufficient to prove
meal system of vectors in R. There exists ex- that ci = -bn-l-i, i = 0,.-. , n - 1. We clearly
actly one orthogonal matrix 0 such that Oei = have 1 = c001 +...+cn_10A-1 = o\ A+...+
vi, i = 1,...,n - 1 and detO = 1. c,-2 \-I +cn_- (-bo-b1A-...-bn-1 n-1) or

We can now outline a proof of Theorem 2.1. 1 = -cn,-lbo, co - c.-lb, = 0, cl - c- 1b2 =
Proof: Denote by Pn the vector space of real 0,.*., cn- 2 - cn_, = 0. This yields b, =
polynomials of degree less or equal n - 1. Set -co/bo, b2 = -cil/bo,..., bn-. = -cn-2/bo.

We now use the relation Ant(1/A) = bot(A). It
< A,A' >= A'J-dP(A). (2.2) follows that b,,-i = bobi, i = 0,. .. ,n. Thus

bn-i/bo = -ci-1/bo, i = 1,...,n. These
We prove that (2.2) defines a positive definite are exactly the required conditions. Thus
scalar product on P,. Observe that we have constructed an orthogonal operator

~ \ d k 0 such that fcA'dA =-< 1,0'1 >, i =

1id' = d ="0,.--,n- 1. Observe that the characteristic
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polynomial of 0 coincides with ý. Thus the where all ri > 0. We then can define the mea-
spectrum of 0 is Am. In particular, det 0 = sure p E M by the conditions p{A,} = ri and
1 (here we use the assumption that -1 € equal to zero otherwise. We immediately see
Am). Let po = 1,...,p,,_1 be an orthonor- that equations (2.1) are satisfied. It remains to
mal basis in P,, obtained by the orthonor- prove that the measure p is defined uniquely
malization of the basis 1,A,.,A" 1 . It is by conditions (2.1). Let Ilk E M,k = 1,2 be
clear that the matrix 6 of the operator 0 such that
is upper Hessenberg in this basis. Moreover,
the entries 6,+,,, are all nonzero (otherwise, ,I A'dpi = / Aidp 2,
span(po,...,pi-1) = span(1,...,A'I-) is an JC JC
invariant subspace of 0 which is not true). i = 0,... , n - 1. Then we can construct
Without loss of generality one can suppose Ok,k = 1,2 such that conditions (2.1) are
that '3 i+I,j > 0 for all i. Otherwise one can satisfied. But then 01 = 02. In particular,
take diag( 1,...,E-),0diag(c,...,CO). Am = AA2, i.e., PI = p2 because we have

Suppose we are given a positive definite for p{A} the following system of Vandermonde
Toeplitz matrix T(r) and an orthogonal ma- equations:
trix 0 E OH+ such that ri =< el,0'e1 >,i =
0,--.,n- 1. Then E A\iU{A} = 77,

T(r) = VTV, (2.3) AEAJA

where V is the upper triangular matrix i 0 n 1.

[e1 , OeI,..-, O"e-1 ] with positive entries on Let T(r) be a positive definite n x n Toeplitz
the main diagonal. But (2.3) is the Cholesky matrix and <, > be the corresponding scalar
decomposition of T(r). Hence it is uniquely product on Pn. Let
defined by T(r). In other words, the vectors
Oel, ..- , on-Iel are uniquely defined by T(r). pi(A) = 6iA' + ... ,6bi > 0, i = 0,. n - 1,

Since these vectors form a basis, the vectorsOe1,.. 0e,... ar unquey deine byourbe the basis obtained by the orthonormaliza-O e l , . . . , O e n - I a r e u n iq u e ly d e fi n e d b y o u r t o r c d r r m t e b s s 1 , -- . n ,
Toeplitz matrix. Thus by Lemma 2.4 the ma- tince fi
trix 0 is uniquely defined by T(r). Given a ince
positive definite Toeplitz matrix T(r) we can is orthogonal to span(A, A ') .whae
endow P, with a scalar product <, > and the Ap,(A) is orthogonal to span(A,..., A'). Fur-
shift operator defined on span(1, A, ..- , An- 2 ) ther, r = Api(A)/6i - Pi+i/,i+l E Pi+1 . Let

as we did before. Then using Lemma 2.4 we Vi E Pi+1 be such that < q,pi >= q(O) for

can extend this operator to the orthogonal op- any q E Pi+i. Since pi is orthogonal to Pi ard

erator 0, defined on P, such that det 0 = 1. both r and Vi are orthogonal to AP,, we obtain

Then the matrix of 0 in the basis obtained by Ap,(A)/6i pj+1(A)/6,+I + 7t'A, (2.4)
orthonormalization of the basis 1, A,..., A"-
belongs to OH+ and ri =< el.0'e, >,i = for some real ,i = 0,-. ,n - 2. An easy cal-
0,.-, n - 1. Consider now the rational func- culation shows that Vi = 6jA'p,(1/A). Hence
tion

f(z) =< 1,(zI O)-1 1 > 1 e?/62 + . (2.5I •+ t t6+ (2.5)
As is easily seen In other words, if we know 70,'",7.n-2, we

f(z) ri can find ,., - ,b-1. Then using (2.4), one can
) z - A' determine p1,',Pn-I and consequently using

3



again (2.4) the corresponding upper Hessen- uniquely defined by its auxiliary Schur param-
berg orthogonal matrix 0. We have by (2.4) eters ai(t) = oi+i,i(t). We now describe ex-
< Api(A),pi(A) >= yi6ipi(0), i = 0,- -- , n - 2. plicitly how these parameters evolve under the
Evaluating (2.4) at 0, we obtain pi+1(0) = Toda flow.
-y6?6,i+1, i = 0,.-. , n- 2. Thus oi+l,+l =<
ApiA,pi(A) >= - i = 1, --. , n-2. Theorem 3.1
Further, o1,1 = -7opo(0) = --y0. Let us set

S= O~i~,i = 6 i-1/6i, Vi = "/i-6?._1 , o fA6(t)

i= 1,.--,n -1, Ao = 1. Here A,(t) is
i=1,...,n- 1. We obviously have =1,---n-1,A =I-Hee it)sthe i-th principal minor of the matrix r(t) =

or? + V? = 1, oii = - I vi-. , exp((O(O) + O(O)T)t).

i = 1,...,n- 1, vo = 1. Further, on,, Proof: We
know [7] that 0(t) = R(t)Q(O)R(t)-1, where-. The sign is defined by the condi- exp(O(O)t) = Q(t)R(t), Q(t) is orthogonal,

tion det 0 - 1. The quantities Pi, or are called and R(t) is an upper triangular matrix with
Schur parameters and auxiliary Schur param- positive entries on the main diagonal. We then
eters, respectively. As we saw above the Schur clearly have
parameters vi, i = 1,--- ,n - 1, determine 0
uniquely.

On the other hand, if we know the entries ai(t) -. ri,+li(t) o..(
oi+l,i = bilbi+1, i = 1....,n - 1 of the matrix
O we can determine 7i by (2.5) up to a sign. In i 1,-.-, n - 1. Here R(t) =11 r/i(t) II. The
other words, the entries oi+,,i (auxiliary Schur operator A' R(t) naturally acts on the i- th
parameters) determine 0 almost uniquely. exterior power A' Rn by the following rule:

A'R(t)(vl A ... A vi) = R(t)vl A ... R(t)vi for

3 Explicit formulas for the any vi,-.', vi E Rn. We have, further, the fol-

evolution of auxiliary Schur lowing relations:

parameters under the Toda r11(t) =< R(t)e1, R(t)el >=

flow < exp(0(O)t)e1,exp(0(0)t)e 1 >=

Let 0(t) =11 oij(t) 11 be the solution to the < el,r(t)el >= Al(t).
Toda flow 6 = [o, 7ro], And more generally

such that 0(0) is upper Hessenberg orthogonal r~1 (t) ... r3,(t) =
and irreducible. Here rO = 0_ - OT and 0_..
is strictly lower triangular part of 0. Then <el A ... A eAr(t)(el A ... A ei) >= Ai(t),
0(t) possesses the same properties and 0(t) (3.2)
converges when t --. oo to a block diagonal i = 1,... , n. By (3.2) we easily obtain
matrix. Each two by two block corresponds to
a pair of complex conjugate eigenvalues. The ri+Via7(t) A t t
blocks are arranged in the decreasing order of r,,(t) = Ai)
real parts of eigenvalues [7, 5]. From the pre-
vious discussion we know that 0(t) is almost The result now follows by (3.1). a

4
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